What is the standard deviation of the following series
class | $0-10$ | $10-20$ | $20-30$ | $30-40$ |
Freq | $1$ | $3$ | $4$ | $2$ |
$81$
$7.6$
$9$
$2.26$
The mean and variance of the marks obtained by the students in a test are $10$ and $4$ respectively. Later, the marks of one of the students is increased from $8$ to $12$ . If the new mean of the marks is $10.2.$ then their new variance is equal to :
Find the standard deviation for the following data:
${x_i}$ | $3$ | $8$ | $13$ | $18$ | $25$ |
${f_i}$ | $7$ | $10$ | $15$ | $10$ | $6$ |
The sum of squares of deviations for $10$ observations taken from mean $50$ is $250$. The co-efficient of variation is.....$\%$
The frequency distribution:
$\begin{array}{|l|l|l|l|l|l|l|} \hline X & 2 & 3 & 4 & 5 & 6 & 7 \\ f & 4 & 9 & 16 & 14 & 11 & 6 \\ \hline \end{array}$
Find the standard deviation.
The $S.D.$ of a variate $x$ is $\sigma$. The $S.D.$ of the variate $\frac{{ax + b}}{c}$ where $a, b, c$ are constant, is